

© GÉANT on behalf of the AARC project.

The research leading to these results has received funding from the European Community’s Horizon2020 Programme under Grant

Agreement No. 653965 (AARC).

Guidelines for credential delegation

Published Date: 13-06-2017

Revision: 1.0

Work Package: JRA1

Document Code: AARC-JRA1.4D

Document URL: https://aarc-project.eu/wp-content/uploads/2017/03/AARC-JRA1.4D.pdf

© GÉANT on behalf of the AARC project.

The research leading to these results has received funding from the European Community’s Horizon2020 Programme under Grant

Agreement No. 653965 (AARC).

ii

Table of Contents

1 Introduction 3

2 Delegation 3

2.1 Types of Delegation 3

2.2 Delegation Features 4

3 Examples 5

3.1 Example 1 (Type A) 5

3.2 Example 2 - OAuth2/OIDC (Type B) 5

3.2.1 Example 2a - Delegation for SAML authentication (Type B): 5

3.3 Example 2b - INDIGO use of OIDC (Type B) 6

3.4 Example 3a - GSI proxies 7

3.5 Example 3b - Combined use of X.509 and OIDC 8

4 Guidelines for Implementing Delegation 8

4.1 Example of Feature Selection 9

5 Risks associated with delegations 10

6 References 12

7 Glossary 13

Guidelines for credential delegation

© GÉANT on behalf of the AARC project.

The research leading to these results has received funding from the European Community’s Horizon2020 Programme under Grant

Agreement No. 653965 (AARC).

3

1 Introduction

Federated single sign-on (SSO) has focused on providing authentication and access control for websites

accessed directly by the user’s browser. For example, logging in to a library resource, or accessing a virtual

learning environment (VLE). The user’s IdP passes information to the service he/she wishes to access. This

assertion is usually strictly limited to being valid only on the website it was created for.

However, in distributed environments it is often necessary for a remote service to access other services on

behalf of a user, or for a software agent to act on behalf of the user. In this case, it is necessary to securely

delegate the user’s “rights” from the website he/she originally accessed to a wide variety of other

applications, such as mobile applications, intranet services and HPC clusters.

The oldest form of credential delegation is to store and reuse the user’s login password. This is neither

possible nor safe in a distributed environment. Current delegation credentials include signed assertions,

session tickets, “tokens” of various types, and proxy certificates.

2 Delegation

This document covers requirements for delegation, to aid (1) the selection of the optimal technology for

implementing delegation, and (2) to deploy and operate the technology. While the examples use specific

technologies, they should also illustrate the situations where delegation is useful.

2.1 Types of Delegation

The term “delegation” is sometimes used to cover slightly different scenarios:

A. Delegation of rights to another person. Combined with RBAC, this becomes entirely an authorisation

question and is outside the scope of this document. The delegatee is typically a person, but could also

be a service.

B. Delegation of access to another person - a client, service, or person requests and obtains the right

from the “owner” of a resource to access the resource, as in OAuth2. The token is typically issued for

a limited time and purpose.

C. Credential delegation (sometimes called impersonation). The most primitive example is copying the

username/password as mentioned above; more useful examples include Kerberos proxiable tickets

(RFC1510) and GSI (RFC3820): a remote service (typically a host/service, not a person) obtains a full or

limited credential with which it can act on behalf of the user.

Guidelines for credential delegation

© GÉANT on behalf of the AARC project.

The research leading to these results has received funding from the European Community’s Horizon2020 Programme under Grant

Agreement No. 653965 (AARC).

4

The first point (type A) is out of scope for this document (it will be covered in AARC2); the more widely used

second and third points are covered here.

2.2 Delegation Features

This section summarises feature-related points to consider when selecting technology/implementations for

delegation (beyond the usual questions of maturity of technology, interoperation of implementations, etc.)

The discussion considers a scenario in which a delegatee acts on behalf of a delegator (and by assumption is

authorised by the delegator), and a token is issued to the delegatee by some authority to enable it to do so.

1. Can the participants (delegator, delegatee) be humans/automated?

a. For the authentication of human participants, is federated identity management (FIM) supported?

(Note that the resource, to which access is delegated, is usually non-human.)

2. How does the delegation integrate with existing authorisation?

3. How is the token validated?

a. By the delegatee?

b. By the resource accessed by the delegatee?

c. Can the token be revoked, such that validation by the resource will fail?

4. Is the technology web-based, or does it support non-web access?

a. If web-based, does it work with basic HTTP clients such as curl (plus perhaps some other standard

components, such as XML or JSON parsers)? Or does it require that the client be a browser (needs

JavaScript, user intervention)?

b. If it supports non-web access, does it also work with web servers/clients?

5. Does it support onward delegation (from the delegatee to a second delegatee)?

a. With the originating user’s permission?

b. Without?

6. Can the scope of the delegated credential be limited? Options include:

a. Limited time (possibly pre-dated, valid in the future).

b. Locked to a particular delegate.

c. Not further proxiable.

d. Limited number of uses.

e. Limited set of activities it can be used for.

7. Is the delegatee’s use of the delegated token logged/audited?

8. How is the delegated credential stored and protected by the delegatee?

Guidelines for credential delegation

© GÉANT on behalf of the AARC project.

The research leading to these results has received funding from the European Community’s Horizon2020 Programme under Grant

Agreement No. 653965 (AARC).

5

3 Examples

3.1 Example 1 (Type A)

Alice is responsible for a VO, so has an “admin” role which gives her rights to define and modify attributes for

members of the VO. However, Alice is going on holiday, so she temporarily assigns the admin role to Bob:

during this holiday period, Bob can manage members’ attributes just like Alice except he cannot delegate the

admin right further. At the end of Alice’s holiday, Bob’s admin assignment times out and he reverts to a

normal member role.

Note that this is different from Alice nominating Bob as her deputy (or of Bob impersonating Alice) in three

respects: first, the delegation of authority is time limited, and secondly, Bob’s rights are restricted to the

delegated role; he cannot do everything that Alice can do. Finally, Bob cannot delegate the right further.

The technologies behind this are out of scope for AARC1 and will be covered in more detail in AARC2.

3.2 Example 2 - OAuth2/OIDC (Type B)

The “classic” OAuth2 delegation scenario is a user delegating rights to a printer to access their photos - this is

described in the introduction to RFC 6749 [OAUTH2]. In this section, we show two extensions of delegation

based on OAuth2 and/or OIDC [OIDC].

3.2.1 Example 2a - Delegation for SAML authentication (Type B):

Guidelines for credential delegation

© GÉANT on behalf of the AARC project.

The research leading to these results has received funding from the European Community’s Horizon2020 Programme under Grant

Agreement No. 653965 (AARC).

6

This example is based on a SAML-based authentication-infrastructure and focuses on a use-case where a

client (“Web Service Client or Portal”) wants to access another web-service (“OAuth2 Resource Server (RS)”)

on behalf of the user. There are two problems when doing this in SAML: a) the delegation step is difficult to

realise with pure SAML (the assertion would have to be securely redirected to the web-service, which is not a

common use-case) and b) the web-service might be REST-based. Therefore, the SAML-based infrastructure is

combined with the OAuth2 authorization code flow to handle delegation. Once the client wants to access the

web-service it issues an Authorization Request (step 2). A SAML SP protects the Authorization Endpoint and

handles authentication (steps 3-5). Note that this is the only place where SAML-based communication takes

place. After that the usual OAuth2 authorization code flow continues (steps 6-9) and finally the client can

access the web-service with the access token (steps 10-12). Note that the client is mainly a OAuth2 client in

this scenario but can also be a SAML SP at the same time.

The EUDAT B2ACCESS, CIlogon, and RCauth services work the same way: services can internally (within the

relying party infrastructure) use OAuth for delegation, with the user authenticated through (external) SAML

IdPs. See also example 3b.

See also [RFC7522].

3.3 Example 2b - INDIGO use of OIDC (Type B)

(This example requires some knowledge of the OAuth2 protocol)

OpenID Connect is used for the authentication and OAuth2 for authorization within INDIGO. The authorization

using OAuth2.0 has two major drawbacks:

1. The OAuth2.0 specification does not specify a way to redelegate (and limit) access to a third instance.

2. OAuth2.0 does not specify a flow to gain long lived access for a downstream service.

Guidelines for credential delegation

© GÉANT on behalf of the AARC project.

The research leading to these results has received funding from the European Community’s Horizon2020 Programme under Grant

Agreement No. 653965 (AARC).

7

The first issue results in the access token issued for service A to be unusable for service B, which from a

security point of view is usually desirable. To put it differently, if service B is allowed to use the token directly,

it will have the same permissions as service A, which is not a good approach from the security point of view.

The question is, what if service A needs to delegate its access to service B so that the service B can perform

only a limited set of tasks on the behalf of the user?

The second issue is slightly more complicated than the first one. This time service B needs a long-lived refresh

token, instead of an access token which is bound to the service (client), in this example A. The service B needs

the refresh token to perform tasks longer than the lifetime of the access token, like performing long running

jobs on behalf of the user.

The INDIGO DataCloud IAM (Identity and Access Management) works around these limitations by

implementing the needed parts of the ‘OAuth 2.0 Token Exchange’ [OAUTH2-TE]. This proposal extends

OAuth 2.0 to enable both clients and delegated clients to request and obtain security tokens from

authorization servers (ASs). The specification defines a new grant type for a token exchange request and the

associated specific parameters for such a request to be submitted to the token endpoint.

Upon successful authentication of the OAuth client (delegator) to the AS (IAM) with one token, a new token is

issued to the client, which can be forwarded to the delegatee. The new token might be an access token that is

more narrowly scoped for the resource, or it could be an entirely different kind of token, including, but not

limited to, bearer or JSON web token (JWT).

If the requested and granted scope includes the ‘offline’ scope, the resource will be able to request a long-

lived refresh token using the freshly minted token. The refresh token will, following the OAuth2.0

specification, be bound to that specific client (delegatee).

The implementation of this feature enables the INDIGO architecture to delegate access and refresh token in a

controllable manner through IAM.

3.4 Example 3a - GSI proxies

In grid job submission, the users of the grid are authenticated using X.509 certificates. The job runs on a

worker node but needs to access resources on behalf of a user, e.g. a storage element. The delegation is done

with GSI proxies [RFC3820] that is, short-lived certificates that are issued and signed with the user’s personal

certificate or with other GSI proxies. This is normally not permitted, but GSI allows for this provided restricted

naming conventions are followed (i.e. users issue delegated certificates only in their own name, not in other

users’ names.)

Multi-step delegation appears naturally in this scenario by creating new GSI proxies from existing GSI proxies,

thus forming a proxy certificate chain. Such multi-step delegations are necessary in for example job-

Guidelines for credential delegation

© GÉANT on behalf of the AARC project.

The research leading to these results has received funding from the European Community’s Horizon2020 Programme under Grant

Agreement No. 653965 (AARC).

8

submission, where the job has to go through a number of services before landing on a worker node, or for so-

called third-party data transfers, where large data files are transferred directly between two storage elements

on behalf of the user.

GSI certificates are used not just to delegate, but also to enable use of credential stores (such as the MyProxy

server), and to “decorate” certificates with authorisation attributes, or with other attributes which limit the

scope, including limiting the number of onward delegations. In case of abuse, the impact can be mitigated by

revoking the end-entity certificate, which will result in the verification of the proxy chain to fail.

In all cases, the general convention is that the private key does not move (see RFC 3820 section 2.7 and the

MyProxy protocol [MYPROXY] section 2.4); thus, a service which wishes to obtain a delegated credential from

the user generates a key pair and a request, and sends the request to the delegator (which may form part of

the chain, with the user themselves being the earliest delegator).

Questions may arise when a longer delegated chain arrives at a service, with more than one of the

delegated/delegating certificates “decorated” with authorisation extensions. These issues were investigated

by the OGF VOMSPROC and IDEL working groups.

3.5 Example 3b - Combined use of X.509 and OIDC

In the portal delegation scenario of the US-based CIlogon service, the flow as described in example 2a is used

to get a user’s end-entity certificate onto a web portal (acting as OIDC client) by putting an online CA behind

an OIDC protected resource (acting as OIDC Resource Server). Logging in at the Authorization Server is

typically done using a SAML SSO flow. The OIDC access token is used by the client to obtain the certificate

from the online CA.

This scenario has been further extended and adapted to the European infrastructure and policy requirements

and let to the development of the RCauth.eu service. In the latter scenario, a full web-flow becomes feasible,

where a Science Gateway can easily obtain a short-lived proxy certificate which can be used in all the use-

cases where GSI certificates are used, such as job-submission on grid-infrastructure, accessing storage

elements etc., but in a way that they remain completely hidden for the end-user.

4 Guidelines for Implementing Delegation
For integrator/developer/architect, faced with the need to delegate within their infrastructure, a decision

needs to be made regarding the technologies to use. As can be gleaned from the examples, different projects

solve the same problem in different ways, either because they have to integrate with different existing

infrastructures or because they require different features. Suggested steps are:

1. Decide which features you need (see section on features)

2. Select technology, preferring standards-based and interoperable, then mature.

Guidelines for credential delegation

© GÉANT on behalf of the AARC project.

The research leading to these results has received funding from the European Community’s Horizon2020 Programme under Grant

Agreement No. 653965 (AARC).

9

3. Look up best practices for running it and implement them

4. Check the risks.

5. Ask for help from the experts

The key point is to select the technology based on the features required; once the selection has been made,

the technology and the features (including the features not supported by the technology) may give rise to

specific risks, which should be assessed.

4.1 Example of Feature Selection

The following table illustrates technology selection based on features, focusing on three very common and

widely supported technologies: GSI proxies, OIDC/OAuth2 and Kerberos. There are other technologies with

similar or different feature sets; in particular, the editorial decision has been taken to not cover SAML ECP1

[SAML-ECP-1], Macaroons [MACAR], iRODS tickets [IRODS], Dynafed [DYNAF], and other relevant but less

widely used technologies.

Feature Required GSI proxies OIDC/OAuth2 Kerberos

Human/automated participants Both Limited2 Both

Integration with existing

authorisation

Fully integrated with VOMS Own authorisation Via LDAP/Active

Directory

Token validated? Verify digital signature of the

chain and check for

revocation

Call-out to AS Digital signature

Web/non-web (primarily

delegatee/resource)?

Mainly non-web Mainly web Both

1 The delegation part of the specification was not included in the main Shibboleth implementation.

2 The “Resource Owner” (cf. RFC 6749) generally has to be human (i.e. the “End-User” of [OIDC-GUIDE]), with

a browser; however, see also Section Error! Reference source not found. Error! Reference source not found..

Guidelines for credential delegation

© GÉANT on behalf of the AARC project.

The research leading to these results has received funding from the European Community’s Horizon2020 Programme under Grant

Agreement No. 653965 (AARC).

10

Onward delegation? Yes, chained (RFC 3820) No, but see [AARC-

JRA1.4D] for discussion

Yes, at least

within realm

Delegation can be restricted (in

the sense of Feature 6)

Partly Depends on token type Partly

Logged/audited use? Yes Yes (in AS) No

How is it protected? Filesystem Filesystem Filesystem

Revocation Yes Implementation

dependent

No

Time limitation Proxies are conventionally

short-lived (O(12h))

Implementation

dependent

Yes

Admittedly, this table does not quite do justice to the discussion, and only covers the high-level questions; but

hopefully it should illustrate the selection process for different delegation technologies, and it could point the

way to further work on delegation, if needed.

5 Risks associated with delegations
The table below summarises several general risks associated with delegation. It does not cover the

technology-specific risks. (For example, if OAuth is used with bearer tokens (RFC 6750), there is a risk that a

stolen token could be misused, as it intentionally does not support Feature 6.b. (Locked to a particular

delegate), but it thus allows delegation to unregistered clients. If the use of the token (through the validation)

is logged by the Authorisation Server (Feature 7), it could help mitigate this risk.)

 Description Type Owner Mitigation

0 Delegation is not supported by

protocol or infrastructure

Proto Infrastructure See earlier subsections of this section

and the guidelines on token

Guidelines for credential delegation

© GÉANT on behalf of the AARC project.

The research leading to these results has received funding from the European Community’s Horizon2020 Programme under Grant

Agreement No. 653965 (AARC).

11

translation services.

1 Delegated credential is compromised Op Infrastructure Use revocable and/or short-lived
credentials.

Adopt best practices for operational

security (see [SIRTFI-1] sections OS,

IR, and PR.)

2 Delegated credential used for non-

user-approved activities, by being too

widely applicable, or by being

forwarded/delegated without the

user’s consent

Op User Credentials with limited use/
purpose/locality and/or which are
revocable.

Auditable (user-visible) use of

delegated credential.

3 Delegated credential is delegated

further (without authorisation)

Op User Special case of Risk 2 (or Risk 1,

depending on point of view). See

[AARC-JRA1.4D].

4 Lack of clarity in interpretation of

rights of delegated credentials,

particularly credentials delegated

multiple times (combining restrictions)

Tech,

Policy

Infrastructure For example, see the work by the

OGF VOMS attribute PROCessing

working group [VOMS-PROC] on

VOMS Attribute Certificate Parsing

Rules for Chained Identity

Credentials.

5 Delegated credential not capable of

inheriting same (or selected)

authorisations as user credential

Tech User Bugfix – may need changes to SP to

support delegated credential

6 User cannot fine-tune limits on

delegated credential so sets the most

general limits or, if possible, turns

them off

Tech,

Usability

Infrastructure Test with real users

7 Delegations don’t work (or features Tech User Needs research

Guidelines for credential delegation

© GÉANT on behalf of the AARC project.

The research leading to these results has received funding from the European Community’s Horizon2020 Programme under Grant

Agreement No. 653965 (AARC).

12

are lost) in a federated environment

(e.g. beyond scope of IdP)

Proto

6 References

[AARC-JRA1.4D] Guidelines for credential delegation

https://aarc-project.eu/wp-content/uploads/2017/03/AARC-JRA1.4D.pdf

[DYNAF] Dynafed – The Dynamic Federation Project web page

http://lcgdm.web.cern.ch/dynafed-dynamic-federation-project

[IRODS] iRODS Docs – Tickets (Guest Access)

https://docs.irods.org/4.2.0/system_overview/users_and_permissions/#tickets-guest-access/

[MACAR] A. Birgisson et al., Macaroons: Cookies with Contextual Caveats for Decentralized

Authorization in the Cloud, Network and Distributed System Security Symposium, 2014

https://www.internetsociety.org/doc/macaroons-cookies-contextual-caveats-decentralized-

authorization-cloud/

[MYPROXY] The MyProxy Protocol

http://grid.ncsa.illinois.edu/myproxy/protocol/

[OAUTH2] The OAuth 2.0 Authorization Framework

https://tools.ietf.org/html/rfc6749

[OAUTH2-TE] OAuth 2.0 Token Exchange (Draft)

https://tools.ietf.org/html/draft-ietf-oauth-token-exchange-08

[OIDC] OpenID Connect

http://openid.net/connect/

[OIDC-GUIDE] OpenID Connect Basic Client Implementer’s Guide 1.0 – draft 37

http://openid.net/specs/openid-connect-basic-1_0.html

[RFC3820] Internet X.509 Public Key Infrastructure (PKI) Proxy Certificate Profile

https://tools.ietf.org/html/rfc3820

[RFC7522] Security Assertion Markup Language (SAML) 2.0 Profile for OAuth 2.0 Client Authentication

and Authorization Grants

https://tools.ietf.org/html/rfc7522

[SAML-ECP-1] Profiles for the OASIS Security Assertion Markup Language (SAML) V2.0, OASIS, March 2005

http://docs.oasis-open.org/security/saml/v2.0/

[SIRTFI-1] T. Barton et al., A Security Incident Response Trust Framework for Federated Identity (Sirtfi)

https://refeds.org/wp-content/uploads/2016/01/Sirtfi-1.0.pdf

[VOMS-PROC] OGF VOMS attribute PROCessing Working Group

https://redmine.ogf.org/projects/voms-proc-wg

https://aarc-project.eu/wp-content/uploads/2017/03/AARC-JRA1.4D.pdf
http://lcgdm.web.cern.ch/dynafed-dynamic-federation-project
https://docs.irods.org/4.2.0/system_overview/users_and_permissions/#tickets-guest-access/
https://docs.irods.org/4.2.0/system_overview/users_and_permissions/#tickets-guest-access/
https://www.internetsociety.org/doc/macaroons-cookies-contextual-caveats-decentralized-authorization-cloud/
https://www.internetsociety.org/doc/macaroons-cookies-contextual-caveats-decentralized-authorization-cloud/
http://grid.ncsa.illinois.edu/myproxy/protocol/
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/draft-ietf-oauth-token-exchange-08
http://openid.net/connect/
http://openid.net/specs/openid-connect-basic-1_0.html
https://tools.ietf.org/html/rfc3820
https://tools.ietf.org/html/rfc7522
http://docs.oasis-open.org/security/saml/v2.0/
https://refeds.org/wp-content/uploads/2016/01/Sirtfi-1.0.pdf
https://refeds.org/wp-content/uploads/2016/01/Sirtfi-1.0.pdf
https://redmine.ogf.org/projects/voms-proc-wg

© GÉANT on behalf of the AARC project.

The research leading to these results has received funding from the European Community’s Horizon2020 Programme under Grant

Agreement No. 653965 (AARC).

13

7 Glossary

ECP Enhanced Client Protocol

FIM Federated Identity Management

GSI Grid Security Infrastructure

JSON JavaScript Object Notation (RFC 7519)

OIDC OpenID Connect

RBAC Role-Based Access Control

REST REpresentational State Transfer (web services design principle)

SAML Security Assertion Markup Language

VLE Virtual Learning Environment

VO Virtual Organization

	1 Introduction
	2 Delegation
	2.1 Types of Delegation
	2.2 Delegation Features

	3 Examples
	3.1 Example 1 (Type A)
	3.2 Example 2 - OAuth2/OIDC (Type B)
	3.2.1 Example 2a - Delegation for SAML authentication (Type B):

	3.3 Example 2b - INDIGO use of OIDC (Type B)
	3.4 Example 3a - GSI proxies
	3.5 Example 3b - Combined use of X.509 and OIDC

	4 Guidelines for Implementing Delegation
	4.1 Example of Feature Selection

	5 Risks associated with delegations
	6 References
	7 Glossary

