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1 Introduction 

Federated single sign-on (SSO) has focused on providing authentication and access control for websites 

accessed directly by the user’s browser. For example, logging in to a library resource, or accessing a virtual 

learning environment (VLE). The user’s IdP passes information to the service he/she wishes to access. This 

assertion is usually strictly limited to being valid only on the website it was created for. 

However, in distributed environments it is often necessary for a remote service to access other services on 

behalf of a user, or for a software agent to act on behalf of the user. In this case, it is necessary to securely 

delegate the user’s “rights” from the website he/she originally accessed to a wide variety of other 

applications, such as mobile applications, intranet services and HPC clusters. 

The oldest form of credential delegation is to store and reuse the user’s login password. This is neither 

possible nor safe in a distributed environment. Current delegation credentials include signed assertions, 

session tickets, “tokens” of various types, and proxy certificates. 

2 Delegation 

This document covers requirements for delegation, to aid (1) the selection of the optimal technology for 

implementing delegation, and (2) to deploy and operate the technology. While the examples use specific 

technologies, they should also illustrate the situations where delegation is useful. 

2.1 Types of Delegation 

The term “delegation” is sometimes used to cover slightly different scenarios: 

A. Delegation of rights to another person. Combined with RBAC, this becomes entirely an authorisation 

question and is outside the scope of this document.  The delegatee is typically a person, but could also 

be a service. 

B. Delegation of access to another person - a client, service, or person requests and obtains the right 

from the “owner” of a resource to access the resource, as in OAuth2. The token is typically issued for 

a limited time and purpose. 

C. Credential delegation (sometimes called impersonation). The most primitive example is copying the 

username/password as mentioned above; more useful examples include Kerberos proxiable tickets 

(RFC1510) and GSI (RFC3820): a remote service (typically a host/service, not a person) obtains a full or 

limited credential with which it can act on behalf of the user. 
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The first point (type A) is out of scope for this document (it will be covered in AARC2); the more widely used 

second and third points are covered here. 

2.2 Delegation Features 

This section summarises feature-related points to consider when selecting technology/implementations for 

delegation (beyond the usual questions of maturity of technology, interoperation of implementations, etc.) 

The discussion considers a scenario in which a delegatee acts on behalf of a delegator (and by assumption is 

authorised by the delegator), and a token is issued to the delegatee by some authority to enable it to do so. 

1. Can the participants (delegator, delegatee) be humans/automated? 

a. For the authentication of human participants, is federated identity management (FIM) supported? 

(Note that the resource, to which access is delegated, is usually non-human.) 

2. How does the delegation integrate with existing authorisation? 

3. How is the token validated? 

a. By the delegatee? 

b. By the resource accessed by the delegatee? 

c. Can the token be revoked, such that validation by the resource will fail? 

4. Is the technology web-based, or does it support non-web access? 

a. If web-based, does it work with basic HTTP clients such as curl (plus perhaps some other standard 

components, such as XML or JSON parsers)? Or does it require that the client be a browser (needs 

JavaScript, user intervention)? 

b. If it supports non-web access, does it also work with web servers/clients? 

5. Does it support onward delegation (from the delegatee to a second delegatee)? 

a. With the originating user’s permission? 

b. Without? 

6. Can the scope of the delegated credential be limited? Options include: 

a. Limited time (possibly pre-dated, valid in the future). 

b. Locked to a particular delegate. 

c. Not further proxiable. 

d. Limited number of uses. 

e. Limited set of activities it can be used for. 

7. Is the delegatee’s use of the delegated token logged/audited? 

8. How is the delegated credential stored and protected by the delegatee? 
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3 Examples 

3.1 Example 1 (Type A) 

Alice is responsible for a VO, so has an “admin” role which gives her rights to define and modify attributes for 

members of the VO. However, Alice is going on holiday, so she temporarily assigns the admin role to Bob: 

during this holiday period, Bob can manage members’ attributes just like Alice except he cannot delegate the 

admin right further. At the end of Alice’s holiday, Bob’s admin assignment times out and he reverts to a 

normal member role. 

Note that this is different from Alice nominating Bob as her deputy (or of Bob impersonating Alice) in three 

respects: first, the delegation of authority is time limited, and secondly, Bob’s rights are restricted to the 

delegated role; he cannot do everything that Alice can do.  Finally, Bob cannot delegate the right further. 

The technologies behind this are out of scope for AARC1 and will be covered in more detail in AARC2. 

3.2 Example 2 - OAuth2/OIDC (Type B) 

The “classic” OAuth2 delegation scenario is a user delegating rights to a printer to access their photos - this is 

described in the introduction to RFC 6749 [OAUTH2]. In this section, we show two extensions of delegation 

based on OAuth2 and/or OIDC [OIDC]. 

3.2.1 Example 2a - Delegation for SAML authentication (Type B): 
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This example is based on a SAML-based authentication-infrastructure and focuses on a use-case where a 

client (“Web Service Client or Portal”) wants to access another web-service (“OAuth2 Resource Server (RS)”) 

on behalf of the user. There are two problems when doing this in SAML: a) the delegation step is difficult to 

realise with pure SAML (the assertion would have to be securely redirected to the web-service, which is not a 

common use-case) and b) the web-service might be REST-based. Therefore, the SAML-based infrastructure is 

combined with the OAuth2 authorization code flow to handle delegation. Once the client wants to access the 

web-service it issues an Authorization Request (step 2). A SAML SP protects the Authorization Endpoint and 

handles authentication (steps 3-5). Note that this is the only place where SAML-based communication takes 

place. After that the usual OAuth2 authorization code flow continues (steps 6-9) and finally the client can 

access the web-service with the access token (steps 10-12). Note that the client is mainly a OAuth2 client in 

this scenario but can also be a SAML SP at the same time.  

The EUDAT B2ACCESS, CIlogon, and RCauth services work the same way: services can internally (within the 

relying party infrastructure) use OAuth for delegation, with the user authenticated through (external) SAML 

IdPs. See also example 3b. 

See also [RFC7522]. 

3.3 Example 2b - INDIGO use of OIDC (Type B) 

(This example requires some knowledge of the OAuth2 protocol) 

OpenID Connect is used for the authentication and OAuth2 for authorization within INDIGO. The authorization 

using OAuth2.0 has two major drawbacks: 

1. The OAuth2.0 specification does not specify a way to redelegate (and limit) access to a third instance. 

2. OAuth2.0 does not specify a flow to gain long lived access for a downstream service. 
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The first issue results in the access token issued for service A to be unusable for service B, which from a 

security point of view is usually desirable. To put it differently, if service B is allowed to use the token directly, 

it will have the same permissions as service A, which is not a good approach from the security point of view.  

The question is, what if service A needs to delegate its access to service B so that the service B can perform 

only  a limited set of tasks on the behalf of the user? 

The second issue is slightly more complicated than the first one. This time service B needs a long-lived refresh 

token, instead of an access token which is bound to the service (client), in this example A. The service B needs 

the refresh token to perform tasks longer than the lifetime of the access token, like performing long running 

jobs on behalf of the user. 

The INDIGO DataCloud IAM (Identity and Access Management) works around these limitations by 

implementing the needed parts of the ‘OAuth 2.0 Token Exchange’ [OAUTH2-TE].  This proposal extends 

OAuth 2.0 to enable both clients and delegated clients to request and obtain security tokens from 

authorization servers (ASs).  The specification defines a new grant type for a token exchange request and the 

associated specific parameters for such a request to be submitted to the token endpoint. 

Upon successful authentication of the OAuth client (delegator) to the AS (IAM) with one token, a new token is 

issued to the client, which can be forwarded to the delegatee. The new token might be an access token that is 

more narrowly scoped for the resource, or it could be an entirely different kind of token, including, but not 

limited to, bearer or JSON web token (JWT). 

If the requested and granted scope includes the ‘offline’ scope, the resource will be able to request a long-

lived refresh token using the freshly minted token. The refresh token will, following the OAuth2.0 

specification, be bound to that specific client (delegatee). 

The implementation of this feature enables the INDIGO architecture to delegate access and refresh token in a 

controllable manner through IAM. 

3.4 Example 3a - GSI proxies 

In grid job submission, the users of the grid are authenticated using X.509 certificates.  The job runs on a 

worker node but needs to access resources on behalf of a user, e.g. a storage element.  The delegation is done 

with GSI proxies [RFC3820] that is, short-lived certificates that are issued and signed with the user’s personal 

certificate or with other GSI proxies. This is normally not permitted, but GSI allows for this provided restricted 

naming conventions are followed (i.e. users issue delegated certificates only in their own name, not in other 

users’ names.) 

Multi-step delegation appears naturally in this scenario by creating new GSI proxies from existing GSI proxies, 

thus forming a proxy certificate chain. Such multi-step delegations are necessary in for example job-
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submission, where the job has to go through a number of services before landing on a worker node, or for so-

called third-party data transfers, where large data files are transferred directly between two storage elements 

on behalf of the user. 

GSI certificates are used not just to delegate, but also to enable use of credential stores (such as the MyProxy 

server), and to “decorate” certificates with authorisation attributes, or with other attributes which limit the 

scope, including limiting the number of onward delegations. In case of abuse, the impact can be mitigated by 

revoking the end-entity certificate, which will result in the verification of the proxy chain to fail.  

In all cases, the general convention is that the private key does not move (see RFC 3820 section 2.7 and the 

MyProxy protocol [MYPROXY] section 2.4); thus, a service which wishes to obtain a delegated credential from 

the user generates a key pair and a request, and sends the request to the delegator (which may form part of 

the chain, with the user themselves being the earliest delegator). 

Questions may arise when a longer delegated chain arrives at a service, with more than one of the 

delegated/delegating certificates “decorated” with authorisation extensions. These issues were investigated 

by the OGF VOMSPROC and IDEL working groups. 

3.5 Example 3b - Combined use of X.509 and OIDC 

In the portal delegation scenario of the US-based CIlogon service, the flow as described in example 2a is used 

to get a user’s end-entity certificate onto a web portal (acting as OIDC client) by putting an online CA behind 

an OIDC protected resource (acting as OIDC Resource Server). Logging in at the Authorization Server is 

typically done using a SAML SSO flow. The OIDC access token is used by the client to obtain the certificate 

from the online CA. 

This scenario has been further extended and adapted to the European infrastructure and policy requirements 

and let to the development of the RCauth.eu service. In the latter scenario, a full web-flow becomes feasible, 

where a Science Gateway can easily obtain a short-lived proxy certificate which can be used in all the use-

cases where GSI certificates are used, such as job-submission on grid-infrastructure, accessing storage 

elements etc., but in a way that they remain completely hidden for the end-user. 

4 Guidelines for Implementing Delegation 
For integrator/developer/architect, faced with the need to delegate within their infrastructure, a decision 

needs to be made regarding the technologies to use. As can be gleaned from the examples, different projects 

solve the same problem in different ways, either because they have to integrate with different existing 

infrastructures or because they require different features. Suggested steps are: 

1. Decide which features you need (see section on features) 

2. Select technology, preferring standards-based and interoperable, then mature. 
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3. Look up best practices for running it and implement them 

4. Check the risks. 

5. Ask for help from the experts 

The key point is to select the technology based on the features required; once the selection has been made, 

the technology and the features (including the features not supported by the technology) may give rise to 

specific risks, which should be assessed. 

4.1 Example of Feature Selection 

The following table illustrates technology selection based on features, focusing on three very common and 

widely supported technologies: GSI proxies, OIDC/OAuth2 and Kerberos. There are other technologies with 

similar or different feature sets; in particular, the editorial decision has been taken to not cover SAML ECP1 

[SAML-ECP-1], Macaroons [MACAR], iRODS tickets [IRODS], Dynafed [DYNAF], and other relevant but less 

widely used technologies. 

Feature Required GSI proxies OIDC/OAuth2 Kerberos 

Human/automated participants Both Limited2 Both 

Integration with existing 

authorisation 

Fully integrated with VOMS Own authorisation Via LDAP/Active 

Directory 

Token validated? Verify digital signature of the 

chain and check for 

revocation 

Call-out to AS Digital signature 

Web/non-web (primarily 

delegatee/resource)? 

Mainly non-web Mainly web Both 

                                                           

1 The delegation part of the specification was not included in the main Shibboleth implementation. 

2 The “Resource Owner” (cf. RFC 6749) generally has to be human (i.e. the “End-User” of [OIDC-GUIDE]), with 

a browser; however, see also Section Error! Reference source not found. Error! Reference source not found.. 
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Onward delegation? Yes, chained (RFC 3820) No, but see [AARC-

JRA1.4D] for discussion 

Yes, at least 

within realm 

Delegation can be restricted (in 

the sense of Feature 6) 

Partly Depends on token type Partly 

Logged/audited use? Yes Yes (in AS) No 

How is it protected? Filesystem Filesystem Filesystem 

Revocation Yes Implementation 

dependent 

No 

Time limitation Proxies are conventionally 

short-lived (O(12h)) 

Implementation 

dependent 

Yes 

 

Admittedly, this table does not quite do justice to the discussion, and only covers the high-level questions; but 

hopefully it should illustrate the selection process for different delegation technologies, and it could point the 

way to further work on delegation, if needed. 

 

5 Risks associated with delegations 
The table below summarises several general risks associated with delegation. It does not cover the 

technology-specific risks. (For example, if OAuth is used with bearer tokens (RFC 6750), there is a risk that a 

stolen token could be misused, as it intentionally does not support Feature 6.b. (Locked to a particular 

delegate), but it thus allows delegation to unregistered clients. If the use of the token (through the validation) 

is logged by the Authorisation Server (Feature 7), it could help mitigate this risk.) 

 Description Type Owner Mitigation 

0 Delegation is not supported by 

protocol or infrastructure 

Proto Infrastructure See earlier subsections of this section 

and the guidelines on token 
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translation services. 

1 Delegated credential is compromised Op Infrastructure Use revocable and/or short-lived 
credentials. 

Adopt best practices for operational 

security (see [SIRTFI-1] sections OS, 

IR, and PR.) 

2 Delegated credential used for non-

user-approved activities, by being too 

widely applicable, or by being 

forwarded/delegated without the 

user’s consent 

Op User Credentials with limited use/ 
purpose/locality and/or which are 
revocable. 

Auditable (user-visible) use of 

delegated credential. 

3 Delegated credential is delegated 

further (without authorisation) 

Op User Special case of Risk 2 (or Risk 1, 

depending on point of view). See 

[AARC-JRA1.4D]. 

4 Lack of clarity in interpretation of 

rights of delegated credentials, 

particularly credentials delegated 

multiple times (combining restrictions) 

Tech, 

Policy 

Infrastructure For example, see the work by the 

OGF VOMS attribute PROCessing 

working group [VOMS-PROC] on 

VOMS Attribute Certificate Parsing 

Rules for Chained Identity 

Credentials. 

5 Delegated credential not capable of 

inheriting same (or selected) 

authorisations as user credential 

Tech User Bugfix – may need changes to SP to 

support delegated credential 

6 User cannot fine-tune limits on 

delegated credential so sets the most 

general limits or, if possible, turns 

them off 

Tech, 

Usability 

Infrastructure Test with real users 

7 Delegations don’t work (or features Tech User Needs research 
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are lost) in a federated environment 

(e.g. beyond scope of IdP) 

Proto 
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7 Glossary 

ECP Enhanced Client Protocol 

FIM Federated Identity Management 

GSI Grid Security Infrastructure 

JSON JavaScript Object Notation (RFC 7519) 

OIDC OpenID Connect 

RBAC Role-Based Access Control 

REST REpresentational State Transfer (web services design principle) 

SAML Security Assertion Markup Language 

VLE Virtual Learning Environment 

VO Virtual Organization 
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